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English

Contact during the exam: Professor Jarle Tufto
Phone: 99 70 55 19

Statistical modelling for biologists and biotechnologists, ST2304
9. juni, 2011
Kl. 9�13

Grades to be announced: 30. juni, 2011

Permitted aids: One handwritten yellow A4 paper, pocket calculator, �Tabeller og formler i
statistikk� (Tapir forlag), K. Rottmann: Matematisk formelsamling.

Help pages for some R functions you may need to use follows on page 7.

Problem 1 Suppose that the number of individuals of a given plant species inside rect-
angles of size A is Poisson distributed with expected value λA where λ = 0.5 per square
meter.

a) Write an R expression that computes the probability that there is exactly 5 individuals
inside a rectangle with an area of 10 square meters.

Suppose that we consider 5 rectangles and that we create a vector A in R which represents the
area (in square meters) of these rectangles as follows.

A <- c(10,15,20,25,30)

b) Write an R expression that, for each of the rectangles, computes the probability that the
number of individual inside the rectangle is greater than 5.

c) Write an R expression that simulates the number of individuals inside each of the 5
rectangles.
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Problem 2 Suppose that we study house sparrow nestling survival in 20 nests and observe
the following data where x is the number of surviving nestlings after 12 days, n is the number
of eggs laid in each nest, badgesize is the size of the badge of the male parent (mm2), and
clutchdate is the date at which the last egg in the clutch was laid after january the 1st.

> sparrows

x n badgesize clutchdate

1 1 3 583 108

2 1 4 477 102

3 3 3 507 133

4 1 3 390 102

5 3 5 313 121

6 2 7 546 116

7 3 5 422 125

8 2 3 505 122

9 2 4 210 110

10 4 5 380 131

11 2 5 355 127

12 2 3 469 118

13 3 4 281 115

14 1 5 243 108

15 3 4 430 131

16 4 7 347 122

17 4 4 503 117

18 1 4 238 110

19 0 3 208 113

20 2 7 418 105

Plots of proportion of surviving nestlings versus badgesize and clutchsize are shown below.
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a) We �rst �t a linear model using the proportion of surviving nestlings as the response
variable and clutchdate as the only explanatory variable after having omitted badgesize
from the model

> prop <- x/n

> summary(lm(prop ~ clutchdate))

Call:

lm(formula = prop ~ clutchdate)

Residuals:

Min 1Q Median 3Q Max

-0.43890 -0.08541 0.00396 0.10957 0.48400

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.73908 0.57646 -3.017 0.00741 **

clutchdate 0.01927 0.00492 3.918 0.00101 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.206 on 18 degrees of freedom

Multiple R-squared: 0.4603,Adjusted R-squared: 0.4303

F-statistic: 15.35 on 1 and 18 DF, p-value: 0.001009

Based on this model, what is the predicted proportion of surviving nestlings if the clutch
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has a clutchdate of 150? Is this precited value reasonable? Are any other assumptions of
the model unreasonable? Would you trust the �nding that clutchdate has a signi�cant
e�ect on nestling survival based on the above model?

Suppose that we instead �t a generalized linear model as follows.

> summary(glm(prop ~ clutchdate+badgesize,weight=n,family=binomial(link=logit)))

Call:

glm(formula = prop ~ clutchdate + badgesize, family = binomial,

weights = n)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.62259 -0.28653 -0.04847 0.37706 2.19469

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.730598 3.116205 -3.123 0.00179 **

clutchdate 0.077864 0.026339 2.956 0.00311 **

badgesize 0.001614 0.002110 0.765 0.44426

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.667 on 19 degrees of freedom

Residual deviance: 15.571 on 17 degrees of freedom

AIC: 53.893

Number of Fisher Scoring iterations: 4

b) Write down the assumptions of this model and an equation representing the model in
mathematical notation. Explain why this model may be more reasonable than the linear
model considered previously.

c) What is the predicted nestling survival in a clutch with a clutchdate equal to 150 and
with a male parent with a badgesize of 400mm2?

d) Are there any signs of over- or under-dispersion in the data? Discuss brie�y possible
mechanisms which may lead to over- and under-dispersion in this situation.
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Problem 3 Suppose that we observe the lifespan X (in years) of 100 di�erent pine trees.
A histogram of the observed lifespan (contained in the vector x) is shown below.
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We assume that these lifespans follow a gamma distribution with density function

f(x) =
1

βαΓ(α)
xα−1e−x/β (1)

a) Write a function lnL which takes two arguments; a vector containing the parameters α
and β and second vector containing the observations. The function should then returns
the negative log likelihood.

Suppose that we then minimise the negative log likelihood function as follows in R.

> fit <- optim(c(1,1),lnL,x=x,hessian=TRUE)

> fit

$par

[1] 1.270927 20.400906

$value
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[1] 423.9039

$counts

function gradient

73 NA

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2]

[1,] 117.014163 4.9017432

[2,] 4.901743 0.3055501

> solve(fit$hessian)

[,1] [,2]

[1,] 0.02605615 -0.4180021

[2,] -0.41800208 9.9785242

b) What parameter values which maximises the likelihood? What is the maximum log
likelihood? Find approximate standard errors of the estimates.

Suppose that we also �t the simpler exponential model to the data and that this gives an
observed maximum log likelihood of-425.56.

c) Explain why the exponential model is nested within the gamma model. Relying on an
asymptotic approximation, can you reject the simpler exponential model in favour of the
gamma model?
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Poisson package:stats R Documentation

The Poisson Distribution

Description:

Density, distribution function, quantile function and random
generation for the Poisson distribution with parameter `lambda'.

Usage:

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments:

x: vector of (non-negative integer) quantiles.

q: vector of quantiles.

p: vector of probabilities.

n: number of random values to return.

lambda: vector of (non-negative) means.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],
otherwise, P[X > x].

Details:

The Poisson distribution has density

p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2, ... . The mean and variance are E(X) = Var(X) =
lambda.

If an element of `x' is not integer, the result of `dpois' is
zero, with a warning. p(x) is computed using Loader's algorithm,
see the reference in `dbinom'.

The quantile is right continuous: `qpois(p, lambda)' is the
smallest integer x such that P(X <= x) >= p.

Setting `lower.tail = FALSE' allows to get much more precise
results when the default, `lower.tail = TRUE' would return 1, see
the example below.

Value:

`dpois' gives the (log) density, `ppois' gives the (log)
distribution function, `qpois' gives the quantile function, and
`rpois' generates random deviates.

Invalid `lambda' will result in return value `NaN', with a
warning.

Source:

`dpois' uses C code contributed by Catherine Loader (see
`dbinom').

`ppois' uses `pgamma'.

`qpois' uses the Cornish-Fisher Expansion to include a skewness
correction to a normal approximation, followed by a search.

`rpois' uses

Ahrens, J. H. and Dieter, U. (1982). Computer generation of
Poisson deviates from modified normal distributions. _ACM
Transactions on Mathematical Software_, *8*, 163-179.

See Also:

Distributions for other standard distributions, including `dbinom'
for the binomial and `dnbinom' for the negative binomial
distribution.

`poisson.test'.

Examples:

require(graphics)

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1
Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)
ppois(10*(15:25), lambda=100, lower.tail=FALSE) # no cancellation

par(mfrow = c(2, 1))
x <- seq(-0.01, 5, 0.01)
plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")
plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")
--------------------------------------------------------------------------------
GammaDist package:stats R Documentation

The Gamma Distribution

Description:

Density, distribution function, quantile function and random
generation for the Gamma distribution with parameters `shape' and
`scale'.

Usage:

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If `length(n) > 1', the length is
taken to be the number required.

rate: an alternative way to specify the scale.

shape, scale: shape and scale parameters. Must be positive, `scale'
strictly.

log, log.p: logical; if `TRUE', probabilities/densities p are returned
as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],
otherwise, P[X > x].

Details:

If `scale' is omitted, it assumes the default value of `1'.

The Gamma distribution with parameters `shape' = a and `scale' = s
has density

f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)

for x >= 0, a > 0 and s > 0. (Here Gamma(a) is the function
implemented by R's `gamma()' and defined in its help. Note that
a=0 corresponds to the trivial distribution with all mass at point
0.)

The mean and variance are E(X) = a*s and Var(X) = a*s^2.

The cumulative hazard H(t) = - log(1 - F(t)) is `-pgamma(t, ...,
lower = FALSE, log = TRUE)'.

Note that for smallish values of `shape' (and moderate `scale') a
large parts of the mass of the Gamma distribution is on values of
x so near zero that they will be represented as zero in computer
arithmetic. So `rgamma' can well return values which will be
represented as zero. (This will also happen for very large values
of `scale' since the actual generation is done for `scale=1'.)
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Value:

`dgamma' gives the density, `pgamma' gives the distribution
function, `qgamma' gives the quantile function, and `rgamma'
generates random deviates.

Invalid arguments will result in return value `NaN', with a
warning.

Note:

The S parametrization is via `shape' and `rate': S has no `scale'
parameter.

`pgamma' is closely related to the incomplete gamma function. As
defined by Abramowitz and Stegun 6.5.1 (and by `Numerical
Recipes') this is

P(a,x) = 1/Gamma(a) integral_0^x t^(a-1) exp(-t) dt

P(a, x) is `pgamma(x, a)'. Other authors (for example Karl
Pearson in his 1922 tables) omit the normalizing factor, defining
the incomplete gamma function as `pgamma(x, a) * gamma(a)'. A few
use the `upper' incomplete gamma function, the integral from x to
infinity which can be computed by `pgamma(x, a, lower=FALSE) *
gamma(a)', or its normalized version. See also <URL:
http://en.wikipedia.org/wiki/Incomplete_gamma_function>.

Source:

`dgamma' is computed via the Poisson density, using code
contributed by Catherine Loader (see `dbinom').

`pgamma' uses an unpublished (and not otherwise documented)
algorithm `mainly by Morten Welinder'.

`qgamma' is based on a C translation of

Best, D. J. and D. E. Roberts (1975). Algorithm AS91. Percentage
points of the chi-squared distribution. _Applied Statistics_,
*24*, 385-388.

plus a final Newton step to improve the approximation.

`rgamma' for `shape >= 1' uses

Ahrens, J. H. and Dieter, U. (1982). Generating gamma variates by
a modified rejection technique. _Communications of the ACM_,
*25*, 47-54,

and for `0 < shape < 1' uses

Ahrens, J. H. and Dieter, U. (1974). Computer methods for
sampling from gamma, beta, Poisson and binomial distributions.
_Computing_, *12*, 223-246.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
Language_. Wadsworth & Brooks/Cole.

Shea, B. L. (1988) Algorithm AS 239, Chi-squared and incomplete
Gamma integral, _Applied Statistics (JRSS C)_ *37*, 466-473.

Abramowitz, M. and Stegun, I. A. (1972) _Handbook of Mathematical
Functions._ New York: Dover. Chapter 6: Gamma and Related
Functions.

See Also:

`gamma' for the gamma function.

Distributions for other standard distributions, including `dbeta'
for the Beta distribution and `dchisq' for the chi-squared
distribution which is a special case of the Gamma distribution.

Examples:

-log(dgamma(1:4, shape=1))
p <- (1:9)/10
pgamma(qgamma(p,shape=2), shape=2)
1 - 1/exp(qgamma(p, shape=1))

# even for shape = 0.001 about half the mass is on numbers
# that cannot be represented accurately (and most of those as zero)
pgamma(.Machine$double.xmin, 0.001)
pgamma(5e-324, 0.001) # on most machines 5e-324 is the smallest

# representable non-zero number
table(rgamma(1e4, 0.001) == 0)/1e4


