Page 1 of 9

Norwegian University of Science and Technology Department of Mathematical Sciences

English

Contact during the exam: Professor Jarle Tufto Phone: 99705519

Statistical modelling for biologists and biotechnologists, ST2304 24. mai, 2013 Kl. 9–13 Grades to be announced: 14. juni, 2013

Permitted aids: One handwritten yellow A4 paper, pocket calculator, "Tabeller og formler i statistikk" (Tapir forlag), K. Rottmann: Matematisk formelsamling.

Help pages for some R functions you may need to use follow on page 9.

Problem 1 We want to test if the variances σ_X^2 and σ_Y^2 in two normally distributed populations are different from each other and collect two samples of size 10 from the first population and of size 20 from the second. It can be shown that the test statistic $F = S_X^2/S_Y^2$ where S_X^2 and S_Y^2 are the two sample variances has a *F*-distribution with 9 and 19 degrees of freedom under the null hypothesis $H_0: \sigma_X^2 = \sigma_Y^2$.

- a) Write an R expression which computes the two critical values for the test if we choose a level of significance equal to 0.05.
- b) Suppose that the estimate of the two variances are 13.5 and 5.2 respectively. Write an R expression that computes the p-value of the test.
- c) Does the test statistic have a discrete or continuous distribution? What is the probability that the test statistic takes a on value of exactly 1?
- d) Write an R expression that simulates 1000 realisations of the test statistic under the assumption that H_0 is true and that plots a histogram of these realisations.

Problem 2 We wish to find the optimal growth temperatur for halibut fry and measure growth y (grams/week) at 19 different water temperatures x (°C) under otherwise equal conditions. The observed data are shown below.

Suppose that we model the relationship between the dependent variable y (growth) and temperature by means of multiple regression as follows, using temperature x and temperature squared x^2 as independent variables (covariates).

```
> x2 <- x^2
> modell <- lm(y ~ x + x2)
> summary(modell)
Call:
lm(formula = y ~ x + x2)
Residuals:
     Min
               1Q
                    Median
                                  ЗQ
                                          Max
-1.55021 -0.31092 0.03203
                             0.38368
                                      1.04305
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                    9.780 2.14e-08 ***
(Intercept)
             4.862606
                         0.497222
             0.816051
                         0.109049
                                    7.483 8.95e-07 ***
х
x2
            -0.031351
                         0.005044
                                   -6.215 9.41e-06 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 0.6683 on 17 degrees of freedom Multiple R-squared: 0.8165, Adjusted R-squared: 0.7949 F-statistic: 37.82 on 2 and 17 DF, p-value: 5.504e-07

- a) Write down the model in mathematical (algebraic) notation and state the assumptions being made. Which independent variables (covariates) have a statistically significant effect on the response variable?
- **b)** Show that the optimal growth temperature x_0 is the function

$$x_0 = f(b_1, b_2) = -\frac{b_1}{2b_2},\tag{1}$$

where b_1 is the regression coefficient for temperature x and b_2 is the regression coefficient for temperature squared x^2 . Hint: Equate the derivative of growth y with respect to temperatur x with zero and solve the resulting equation for x.

Calculate the estimate \hat{x}_0 of optimal growth temperature. Does the estimate appear reasonable based on the observed data?

c) Find the standard error of \hat{x}_0 . You will, among other quantities, need an estimate of the covariance between \hat{b}_1 and \hat{b}_2 which can be found from the following R output. See the help page for vcov for further information.

```
> vcov(modell)
```

(Intercep	pt) x	x2
0.247229	-0.048192	0.001959
-0.048192	0.011891	-0.000534
0.001959	-0.000534	0.000025
	(Intercep 0.247229 -0.048192 0.001959	(Intercept) x 0.247229 -0.048192 -0.048192 0.011891 0.001959 -0.000534

Again, comment on whether the estimate appear reasonable given the above figure.

Problem 3 As part of a survey looking into recreational use of Bymarka in Trondheim we count the number of walkers, cyclists and runners passing a certain sampling location on their way into Bymarka between 09:00 and 20:00 during each day in June and July 2012. We load the data into the following data frame in R.

>	bymarka			
	weekday	weekend	precip	count
1	fri	no	0.1	13
2	sat	yes	0.3	21
3	sun	yes	2.8	20
4	mon	no	0.2	7
5	tue	no	0.7	10
6	wed	no	0.0	11
7	thu	no	1.9	13
8	fri	no	0.5	9
9	sat	yes	0.0	20
10	sun	yes	0.6	20
11	mon	no	0.1	11
12	tue	no	0.0	10
13	wed	no	0.4	8
14	thu	no	2.7	13
15	fri	no	1.8	8
16	sat	yes	0.6	21
17	' sun	yes	8.7	15
18	s mon	no	0.8	13
19	tue	no	0.0	10
20	wed	no	0.0	9
21	thu	no	0.0	7
•				
•				
•				
57	í fri	no	0.0	1
58	s sat	yes	12.4	5
59	sun	yes	8.2	4
60	mon	no	6.5	5
61	tue	no	0.0	12

The variables weekday and weedend are factors representing day of the week and if a day is part of the weekend or not (saturday or sunday) respectively. The variable precip is the amount of precipitation measured in mm and count is the number of persons passing the sampling location each day. The data is graphically presented in the following figure.

We first fit the following model (model A).

```
> fitA <- glm(count ~ weekend + precip,fam=poisson)</pre>
> summary(fitA)
Call:
glm(formula = count ~ weekend + precip, family = poisson(link="log")
Deviance Residuals:
    Min
               1Q
                    Median
                                  ЗQ
                                          Max
-3.2315
         -1.2276
                   -0.0180
                             0.9036
                                       2.3345
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)
             2.12138
                         0.05893
                                  35.999
                                           < 2e-16 ***
                                    8.133 4.20e-16 ***
weekendyes
             0.69069
                         0.08493
precip
            -0.08896
                         0.01830
                                  -4.860 1.17e-06 ***
```

```
Page 6 of 9
ST2304 Stat. mod. for biol. og biotech. 24. mai, 2013
_ _ _
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 188.07
                           on 60
                                  degrees of freedom
Residual deviance: 108.11 on 58 degrees of freedom
AIC: 352.32
Number of Fisher Scoring iterations: 5
> drop1(fitA,test="Chisq")
Single term deletions
Model:
count ~ weekend + precip
        Df Deviance
                              LRT Pr(>Chi)
                       AIC
<none>
             108.11 352.32
weekend 1
             171.21 413.41 63.093 1.972e-15 ***
             136.50 378.71 28.390 9.919e-08 ***
precip
         1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

a) Explain why the Poisson-assumption might be a reasonable starting assumption. How many person are expected to pass the sampling location per day on a weekend compared to on a workday (monday to friday)? Is the difference statistically signifikant? Compute the expected number of persons passing on a day of the weekend given 5mm of precipitation.

To test if there are any additional differences between the expected number of persons passing between the different weekdays beyond the workday/weekend-effect we fit the following alternative model (model B).

```
> fitB <- glm(count ~ weekday + precip,fam=poisson)
> summary(fitB)
Call:
glm(formula = count ~ weekday + precip, family = poisson)
```

Deviance Residuals:

Median Min 1Q ЗQ Max -3.2586 -0.0993 2.4785 -1.1416 0.9164 Coefficients: Estimate Std. Error z value Pr(|z|)0.12422 17.871 < 2e-16 *** (Intercept) 2.22000 0.16958 -0.547 0.584407 weekdaytue -0.09275 weekdaywed -0.19018 0.18585 -1.023 0.306167 -0.832 0.405633 weekdaythu -0.14767 0.17758 weekdayfri -0.08671 0.17030 -0.509 0.610648 weekdaysat 0.63720 0.14876 4.283 1.84e-05 *** weekdaysun 0.54393 0.15132 3.595 0.000325 *** 0.01857 -4.777 1.78e-06 *** precip -0.08874 ___ 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: (Dispersion parameter for poisson family taken to be 1) Null deviance: 188.07 on 60 degrees of freedom Residual deviance: 106.33 degrees of freedom on 53 AIC: 360.54 Number of Fisher Scoring iterations: 5 > drop1(fitB,test="Chisq") Single term deletions Model: count ~ weekday + precip Df Deviance AIC LRT Pr(>Chi) <none> 106.33 360.54 171.21 413.41 64.877 4.572e-12 *** weekday 6 133.60 385.81 27.269 1.770e-07 *** precip 1 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

b) Explain why model A is nested in model B. What are the number of estimated parameters under model A and B. Test if there is any difference between workdays or between saturday/sundays in the expected number of persons passing beyond the workday/weekendeffect. Hint: The result of this test can not be read directly from the above output but must be computed "by hand". c) Test if there is overdispersion in the data under the selected model. Discuss possible mechanisms that might generate overdispersion in this specific case.

FDist The F Distribution R Documentation

Description:

Density, distribution function, quantile function and random generation for the F distribution with 'df1' and 'df2' degrees of freedom (and optional non-centrality parameter 'ncp').

Usage:

df(x, df1, df2, ncp, log = FALSE)
pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2, ncp)

package:stats

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations. If <code>'length(n) > 1'</code>, the length is taken to be the number required.

df1, df2: degrees of freedom. 'Inf' is allowed.

ncp: non-centrality parameter. If omitted the central ${\tt F}$ is assumed.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

Details:

The F distribution with 'df1 =' n1 and 'df2 =' n2 degrees of freedom has density

for x > 0.

It is the distribution of the ratio of the mean squares of n1 and n2 independent standard normals, and hence of the ratio of two independent chi-squared variates each divided by its degrees of freedom. Since the ratio of a normal and the root mean-square of m independent normals has a Student's t_m distribution, the square of a t_m variate has a F distribution on 1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of unit variance, but those in the numerator are allowed to have non-zero means and 'ncp' is the sum of squares of the means. See Chisquare for further details on non-central distributions.

Value:

'df' gives the density, 'pf' gives the distribution function 'qf' gives the quantile function, and 'rf' generates random deviates.

Invalid arguments will result in return value 'NaN', with a warning.

Note:

Supplying 'ncp = 0' uses the algorithm for the non-central distribution, which is not the same algorithm used if 'ncp' is omitted. This is to give consistent behaviour in extreme cases with values of 'ncp' very near zero.

The code for non-zero 'ncp' is principally intended to be used for moderate values of 'ncp': it will not be highly accurate, especially in the tails, for large values.

Source:

For the central case of 'df', computed _via_ a binomial

probability, code contributed by Catherine Loader (see 'dbinom'); for the non-central case computed _via_ 'dbeta', code contributed by Peter Ruckdeschel.

For 'pf', _via_ 'pbeta' (or for large 'df2', _via_ 'pchisq').

For 'qf', _via_ 'qchisq' for large 'df2', else _via_ 'qbeta'.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S Language_. Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous Univariate Distributions_, volume 2, chapters 27 and 30. Wiley, New York.

```
See Also:
```

Distributions for other standard distributions, including 'dchisq' for chi-squared and 'dt' for Student's t distributions.

Examples:

the density of the square of a t_m is 2*dt(x, m)/(2*x)# check this is the same as the density of F_{1,m} x <- seq(0.001, 5, len=100) all.equal(df(x^2, 1, 5), dt(x, 5)/x)

Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2
p <- seq(1/2, .99, length=50); df <- 10
rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))
quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9</pre>

vcov package:stats R Documentation

Calculate Variance-Covariance Matrix for a Fitted Model Object

Description:

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage:

vcov(object, ...)

Arguments:

object: a fitted model object, typically. Sometimes also a 'summary()' object of such a fitted model.

...: additional arguments for method functions. For the 'glm' method this can be used to pass a 'dispersion' parameter.

Details:

This is a generic function. Functions with names beginning in 'vcov.' will be methods for this function. Classes with methods for this function include: 'lm', 'mlm', 'glm', 'nls', 'summary.glm', 'negbin', 'polr', 'rlm' (in package 'MASS'), 'multinom' (in package 'nnet') 'gls', 'lme' (in package 'nlme'), 'coxph' and 'survreg' (in package 'survival').

('vcov()' methods for summary objects allow more efficient and still encapsulated access when both 'summary(mod)' and 'vcov(mod)' are needed.)

Value:

A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model. This should have row and column names corresponding to the parameter names given by the 'coef' method.