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Problem 1 Suppose that the stochastic variableX is binomially distributed with parameters
n = 20 and p = 0.3.

a) Write an R expression that computes the probabilities

P (X < 9), P (X ≤ 9), P (X > 9), P (X ≥ 9).

The skew of a random variable Y is defined as

E((Y − µ)3)

(σ2)3/2

where µ and σ2 are the mean and variance of Y .

b) Compute the mean and variance of X. Write an R expression that simulates 1000 realiza-
tions of X and assigns these to a vector x. Write another expression that based on these
simulated values estimates the skew of X.

Problem 2 Bergmann’s rule says that mean bodysize within a species tends to be larger
in subpopulations with cold climates than in subpopulations with warm climate. In a pilot
study examining if this holds for least weasel (Mustela nivalis), a researcher collects in total 15
individuals from subpopulations at three different latitudes as shown in Fig.1. The researcher
then fits the following model in R.

> linear <- lm(bodymass~latitude)
> summary(linear)

Call:
lm(formula = bodymass ~ latitude)

Residuals:
Min 1Q Median 3Q Max

-2.9749 -1.3083 -0.1913 1.0138 3.5128

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0439 10.4535 0.483 0.6375
latitude 0.3879 0.1590 2.440 0.0298 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.032 on 13 degrees of freedom
Multiple R-squared: 0.3141,Adjusted R-squared: 0.2613
F-statistic: 5.952 on 1 and 13 DF, p-value: 0.02979

a) Write down the model in mathematical notation and give a summary of the model as-
sumptions. What are the estimates of the unknown parameters? What is the estimate of
the expected difference in body mass for two individuals sampled at the 62nd and 70th
latitude?
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Figure 1: Observed body sizes (in grams) i subpopulations at three different latitudes.
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b) Is the effect of latitude on bodymass stastistical significant if we choose α = 0.05 as our
significance level? Write an R expression that for the the same hypothesis test computes
critical values if we instead choose α = 0.05 as our level of significance.

To test the assumption of linearity the researcher fits an alternative model with latitude include
instead as a categorical explanatory variable (factor) as follows.

> latfactor <- factor(latitude)
> latfactor
[1] 62 62 62 62 62 65 65 65 65 65 70 70 70 70 70

Levels: 62 65 70
> nonlinear <- lm(bodymass~latfactor)
> summary(nonlinear)

Call:
lm(formula = bodymass ~ latfactor)

Residuals:
Min 1Q Median 3Q Max

-2.7790 -1.4715 -0.0266 0.8837 3.3096

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7661 0.9272 31.024 7.91e-13 ***
latfactor65 2.0125 1.3113 1.535 0.1508
latfactor70 3.2336 1.3113 2.466 0.0297 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.073 on 12 degrees of freedom
Multiple R-squared: 0.3408,Adjusted R-squared: 0.2309
F-statistic: 3.101 on 2 and 12 DF, p-value: 0.08209

> anova(linear,nonlinear)
Analysis of Variance Table

Model 1: bodymass ~ latitude
Model 2: bodymass ~ latfactor

Res.Df RSS Df Sum of Sq F Pr(>F)
1 13 53.673
2 12 51.584 1 2.0891 0.486 0.499

c) Are the models linear and nonlinear nested? Is there any evidence in the observed data
that the relationship between body mass and latitude is non-linear? Which of the two
models are preferable?

d) The researcher wants to publish her results in a journal which deems results statistically
significant only at a level of α = 0.01 (probability of type I error). She therefore needs
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to compute how much more data she needs to collect before the effect of latitude can
be expected to become statistically significant at this level of significance. Assume that
above linear model is correct and that the true parameter values are equal to the above
estimates. Also assume that the new larger dataset is will consist of two samples, both of
size n, sampled from populations at the 62nd and the 70th latitude. Write an R-expression
that computes the necessary sample size under these assumptions such that the statistical
power becomes equal to 0.9 (see attachment).
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Figure 2: Number of moose collisions divided by the length of the road segment (km−1) versus speed
limit (km/h) for road segments within different vegetation types and with and without wildlife fences

(see legend).

Problem 3 The road authorities wants to analyse how the number of vehicle-moose collisions
y along road segments registred during a 10 year period is influenced by the speed limit for the
road segments (km/h), the type of vegetation surrounding the segment (woodland, farmland,
alpine), the length of the road segment (km), and whether the road is surrounded by wildlife
fences or not (see Fig. 2). We organise the data in the following data frame in R (the first 30 out
of 300 observations are shown) and analyse the data using a generalized linear model.

y vegetation speedlimit fence length
1 0 alpine 80 no 0.945
2 0 woodland 70 no 0.567
3 0 farmland 30 no 0.656
4 0 alpine 90 no 1.074
5 0 alpine 100 yes 1.067
6 0 woodland 50 no 0.484
7 0 alpine 70 no 0.542
8 0 alpine 50 no 0.834
9 0 farmland 70 no 0.634
10 0 farmland 100 yes 0.735
11 0 farmland 30 no 0.448
12 0 alpine 70 no 0.698
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13 0 farmland 50 no 0.382
14 0 farmland 100 yes 0.763
15 0 alpine 100 yes 0.947
16 2 farmland 90 no 0.450
17 0 alpine 80 no 0.717
18 1 farmland 80 no 0.377
19 1 woodland 90 yes 0.680
20 1 alpine 90 no 0.993
21 0 alpine 100 yes 0.946
22 0 farmland 50 no 1.070
23 0 woodland 70 no 0.725
24 1 woodland 100 yes 0.542
25 0 farmland 50 no 0.519
26 0 woodland 80 no 0.846
27 2 woodland 50 no 1.174
28 1 woodland 100 yes 0.953
29 0 farmland 30 no 0.457
30 0 farmland 70 no 0.478

Call:
glm(formula = y ~ log(speedlimit) + vegetation + fence, family = poisson(link = "log"),

data = data, offset = log(length))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.81143 -0.54300 -0.30002 -0.08992 3.07849

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.1970 3.3543 -6.319 2.63e-10 ***
log(speedlimit) 4.9203 0.7604 6.471 9.74e-11 ***
vegetationfarmland -0.4956 0.2257 -2.196 0.0281 *
vegetationalpine -1.7222 0.3286 -5.241 1.59e-07 ***
fenceyes -2.8762 0.4191 -6.863 6.73e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 319.28 on 299 degrees of freedom
Residual deviance: 161.71 on 295 degrees of freedom
AIC: 325.02

Number of Fisher Scoring iterations: 6

a) Explain why the Poisson assumption, the log link-function, and the inclusion of the log of
the length of the road segments as an offset variable may be reasonable assumptions.
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b) We have included the log of the speed limit as a numerical explanatory variable in the
model. By how many percent is the expected number of collisions reduced according to
the fitted model if the speed limit is reduced from 80 to 70 km/h and other explanatory
variables are kept constant? For which vegetation type does such a reduction in the speed
limit lead to the greatest reduction in the expected number of collitions?

c) Is there any evidence of overdispersion in the data? Discuss concrete mechanisms that may
generate overdispersion in the situation we have modelled.

Problem 4 Suppose that x1, x2, . . . , xn are independent observations from a Gamma distri-
bution with probability density function

f(x) =
1

σαΓ(α)
xα−1e−x/σ, for x > 0.

If needed, se the attached help pages for information about the mathematical function Γ(α).

a) We wish to estimate the unknown parameters α and σ. Write down a mathematical ex-
pression for the likelihood and the log-likelihood function. Also write an R function that
computes the log likelihood for given values of the parameters and for a given set of obser-
vations x1, x2, . . . , xn represented in a suitable way in R. Briefly explain with word what
we mean by the maximum likelihood estimators of the unknown parameters and how we
may compute these using numerical methods in R.



power.t.test Power calculations for one and two sample t tests

Description

Compute the power of the one- or two- sample t test, or determine parameters to obtain a target
power.

Usage

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE, tol = .Machine$double.eps^0.25)

Arguments

n number of observations (per group)

delta true difference in means

sd standard deviation

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

type string specifying the type of t test. Can be abbreviated.

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

Details

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as NULL, and
that parameter is determined from the others. Notice that the last two have non-NULL defaults, so
NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite
direction of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

1

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstroem

See Also

t.test, uniroot

Examples

power.t.test(n = 20, delta = 1)
power.t.test(power = .90, delta = 1)
power.t.test(power = .90, delta = 1, alternative = "one.sided")

2

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution
with parameters size and prob.

This is conventionally interpreted as the number of ‘successes’ in size trials.

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

size number of trials (zero or more).

prob probability of success on each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The binomial distribution with size = n and prob = p has density

p(x) =

(
n

x

)
px(1− p)

n−x

for x = 0, . . . , n. Note that binomial coefficients can be computed by choose in R.

If an element of x is not integer, the result of dbinom is zero, with a warning.

p(x) is computed using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile function
and rbinom generates random deviates.

If size is not an integer, NaN is returned.

The length of the result is determined by n for rbinom, and is the maximum of the lengths of the
numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.
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Source

For dbinom a saddle-point expansion is used: see

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabilities; available from
http://www.herine.net/stat/software/dbinom.html.

pbinom uses pbeta.

qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rbinom (for size < .Machine$integer.max) is based on

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation. Commu-
nications of the ACM, 31, 216–222.

For larger values it uses inversion.

See Also

Distributions for other standard distributions, including dnbinom for the negative binomial, and
dpois for the Poisson distribution.

Examples

require(graphics)
# Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

## Using "log = TRUE" for an extended range :
n <- 2000
k <- seq(0, n, by = 20)
plot (k, dbinom(k, n, pi/10, log = TRUE), type = "l", ylab = "log density",

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(k, log(dbinom(k, n, pi/10)), col = "red", lwd = 2)
## extreme points are omitted since dbinom gives 0.
mtext("dbinom(k, log=TRUE)", adj = 0)
mtext("extended range", adj = 0, line = -1, font = 4)
mtext("log(dbinom(k))", col = "red", adj = 1)

2
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GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma distribution
with parameters shape and scale.

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters. Must be positive, scale strictly.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x ≥ 0, α > 0 and σ > 0. (Here Γ(α) is the function implemented by R’s gamma() and defined
in its help. Note that a = 0 corresponds to the trivial distribution with all mass at point 0.)

The mean and variance are E(X) = ασ and V ar(X) = ασ2.

The cumulative hazard H(t) = − log(1 − F (t)) is

-pgamma(t, ..., lower = FALSE, log = TRUE)

Note that for smallish values of shape (and moderate scale) a large parts of the mass of the Gamma
distribution is on values of x so near zero that they will be represented as zero in computer arith-
metic. So rgamma may well return values which will be represented as zero. (This will also happen
for very large values of scale since the actual generation is done for scale = 1.)

1

Value

dgamma gives the density, pgamma gives the distribution function, qgamma gives the quantile function,
and rgamma generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rgamma, and is the maximum of the lengths of the
numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

Note

The S (Becker et al (1988) parametrization was via shape and rate: S had no scale parameter. In
R 2.x.y scale took precedence over rate, but now it is an error to supply both.

pgamma is closely related to the incomplete gamma function. As defined by Abramowitz and Stegun
6.5.1 (and by ‘Numerical Recipes’) this is

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt

P (a, x) is pgamma(x, a). Other authors (for example Karl Pearson in his 1922 tables) omit the
normalizing factor, defining the incomplete gamma function γ(a, x) as γ(a, x) =

∫ x
0
ta−1e−tdt,

i.e., pgamma(x, a) * gamma(a). Yet other use the ‘upper’ incomplete gamma function,

Γ(a, x) =

∫ ∞

x

ta−1e−tdt,

which can be computed by pgamma(x, a, lower = FALSE) * gamma(a).

Note however that pgamma(x, a, ..) currently requires a > 0, whereas the incomplete gamma
function is also defined for negative a. In that case, you can use gamma_inc(a,x) (for Γ(a, x))
from package gsl.
See also http://en.wikipedia.org/wiki/Incomplete_gamma_function, or http://dlmf.nist.
gov/8.2#i.

Source

dgamma is computed via the Poisson density, using code contributed by Catherine Loader (see
dbinom).

pgamma uses an unpublished (and not otherwise documented) algorithm ‘mainly by Morten Welin-
der’.

qgamma is based on a C translation of

Best, D. J. and D. E. Roberts (1975). Algorithm AS91. Percentage points of the chi-squared
distribution. Applied Statistics, 24, 385–388.

plus a final Newton step to improve the approximation.

rgamma for shape >= 1 uses

Ahrens, J. H. and Dieter, U. (1982). Generating gamma variates by a modified rejection technique.
Communications of the ACM, 25, 47–54,

and for 0 < shape < 1 uses

Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma, beta, Poisson
and binomial distributions. Computing, 12, 223–246.
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References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Shea, B. L. (1988) Algorithm AS 239, Chi-squared and incomplete Gamma integral, Applied Statis-
tics (JRSS C) 37, 466–473.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, section 8.2.

See Also

gamma for the gamma function.

Distributions for other standard distributions, including dbeta for the Beta distribution and dchisq
for the chi-squared distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape = 1))
p <- (1:9)/10
pgamma(qgamma(p, shape = 2), shape = 2)
1 - 1/exp(qgamma(p, shape = 1))

# even for shape = 0.001 about half the mass is on numbers
# that cannot be represented accurately (and most of those as zero)
pgamma(.Machine$double.xmin, 0.001)
pgamma(5e-324, 0.001) # on most machines 5e-324 is the smallest

# representable non-zero number
table(rgamma(1e4, 0.001) == 0)/1e4

3
Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)

gamma(x)
lgamma(x)
psigamma(x, deriv = 0)
digamma(x)
trigamma(x)

choose(n, k)
lchoose(n, k)
factorial(x)
lfactorial(x)

Arguments

a, b non-negative numeric vectors.

x, n numeric vectors.

k, deriv integer vectors.

Details

The functions beta and lbeta return the beta function and the natural logarithm of the beta function,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The formal definition is

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt

(Abramowitz and Stegun section 6.2.1, page 258). Note that it is only defined in R for non-negative
a and b, and is infinite if either is zero.

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm of the
absolute value of the gamma function. The gamma function is defined by (Abramowitz and Stegun
section 6.1.1, page 255)

Γ(x) =

∫ ∞

0

tx−1e−tdt

for all real x except zero and negative integers (when NaN is returned). There will be a warning on
possible loss of precision for values which are too close (within about 10−8)) to a negative integer
less than ‘-10’.

1
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factorial(x) (x! for non-negative integer x) is defined to be gamma(x+1) and lfactorial to be
lgamma(x+1).

The functions digamma and trigamma return the first and second derivatives of the logarithm of the
gamma function. psigamma(x, deriv) (deriv >= 0) computes the deriv-th derivative of ψ(x).

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

ψ and its derivatives, the psigamma() functions, are often called the ‘polygamma’ functions, e.g. in
Abramowitz and Stegun (section 6.4.1, page 260); and higher derivatives (deriv = 2:4) have
occasionally been called ‘tetragamma’, ‘pentagamma’, and ‘hexagamma’.

The functions choose and lchoose return binomial coefficients and the logarithms of their absolute
values. Note that choose(n, k) is defined for all real numbers n and integer k. For k ≥ 1 it is
defined as n(n− 1) · · · (n− k + 1)/k!, as 1 for k = 0 and as 0 for negative k. Non-integer values
of k are rounded to an integer, with a warning.
choose(*, k) uses direct arithmetic (instead of [l]gamma calls) for small k, for speed and accuracy
reasons. Note the function combn (package utils) for enumeration of all possible combinations.

The gamma, lgamma, digamma and trigamma functions are internal generic primitive functions:
methods can be defined for them individually or via the Math group generic.

Source

gamma, lgamma, beta and lbeta are based on C translations of Fortran subroutines by W. Fullerton
of Los Alamos Scientific Laboratory (now available as part of SLATEC).

digamma, trigamma and psigamma are based on

Amos, D. E. (1983). A portable Fortran subroutine for derivatives of the psi function, Algorithm
610, ACM Transactions on Mathematical Software 9(4), 494–502.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (For gamma and lgamma.)

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
http://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which
is in public domain.
Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sqrt for miscellaneous mathematical functions and Bessel for the real
Bessel functions.

For the incomplete gamma function see pgamma.

Examples

require(graphics)

choose(5, 2)
for (n in 0:10) print(choose(n, k = 0:n))

factorial(100)
lfactorial(10000)

2## gamma has 1st order poles at 0, -1, -2, ...
## this will generate loss of precision warnings, so turn off
op <- options("warn")
options(warn = -1)
x <- sort(c(seq(-3, 4, length.out = 201), outer(0:-3, (-1:1)*1e-6, "+")))
plot(x, gamma(x), ylim = c(-20,20), col = "red", type = "l", lwd = 2,

main = expression(Gamma(x)))
abline(h = 0, v = -3:0, lty = 3, col = "midnightblue")
options(op)

x <- seq(0.1, 4, length.out = 201); dx <- diff(x)[1]
par(mfrow = c(2, 3))
for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2
nm <- paste0(ch, "gamma")
if (is.deriv) {

dy <- diff(y) / dx # finite difference
der <- which(ch == c("di","tri","tetra","penta")) - 1
nm2 <- paste0("psigamma(*, deriv = ", der,")")
nm <- if(der >= 2) nm2 else paste(nm, nm2, sep = " ==\n")
y <- psigamma(x, deriv = der)

} else {
y <- get(nm)(x)

}
plot(x, y, type = "l", main = nm, col = "red")
abline(h = 0, col = "lightgray")
if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}
par(mfrow = c(1, 1))

## "Extended" Pascal triangle:
fN <- function(n) formatC(n, width=2)
for (n in -4:10) {

cat(fN(n),":", fN(choose(n, k = -2:max(3, n+2))))
cat("\n")

}

## R code version of choose() [simplistic; warning for k < 0]:
mychoose <- function(r, k)

ifelse(k <= 0, (k == 0),
sapply(k, function(k) prod(r:(r-k+1))) / factorial(k))

k <- -1:6
cbind(k = k, choose(1/2, k), mychoose(1/2, k))

## Binomial theorem for n = 1/2 ;
## sqrt(1+x) = (1+x)^(1/2) = sum_{k=0}^Inf choose(1/2, k) * x^k :
k <- 0:10 # 10 is sufficient for ~ 9 digit precision:
sqrt(1.25)
sum(choose(1/2, k)* .25^k)
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