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Problem 1

a) Keeping in mind that X is discrete and that pbinom computes FX(q) = P (X ≤ q) (by default)
and the probability of the complementary event, P (X > q), if setting lower.tail=FALSE the
four probabilities may be computed using the expressions

pbinom(8,size=20,prob=0.3) # P(X<9) = P(X<=8)
pbinom(9,size=20,prob=0.3) # P(X<=9)
pbinom(9,size=20,prob=0.3,lower.tail=FALSE) # P(X>9)
pbinom(8,size=20,prob=0.3,lower.tail=FALSE) # P(X>=9) = P(X>8)

b) Since X is binomially distributed, µ = EX = np = 6 and σ2 = VarX = np(1− p) = 4.2. The
expression

x <- rbinom(1000,size=20,prob=0.3)

simulates 1000 realisations of X. To compute the skew of X we see that this involves finding
the expected value of the random variable (X − µ)3. Having simulated 1000 realisations of X,
1000 realisations of (X − µ)3 is computed by the expression (x-6)^3, and the expected value
by the sample average mean((x-6)^3) which tends to theoretical expectation as the number
of realisations become large. The skew is then computed (estimated) by

mean((x-6)^3)/4.2^(3/2)

Problem 2

a) Letting Y denote each observed body mass and x the latitudes at which each observation were
made, model linear assumes that

Y = β0 + β1x+ e (1)

where the residuals e are independent and N(0, σ2).
From the model summary, estimates of the unknown parameters β0, β1 and σ are β̂0 = 5.0439,
β̂1 = 0.3879 and σ̂ = 2.032.
An estimate of the expected difference between individuals sampled at the 62nd and 70th
latitude becomes β̂1(70− 62) = 0.3879 · 8 = 3.1032.

b) Given the p-value of 0.0298 the effect of latitude is significant if choosing a significance level
of α = 0.05. If instead using a significance level of α = 0.01, this would not be significant
and the critical values would be the upper and lower 0.005-quantiles of the t-distribution with
n − p = 15 − 2 = 13 degrees of freedom which can be computed in R with the expression
qt(c(.005,.995), df=13).

c) If we instead including latitude as a factor with three levels 62, 65, 70, the model becomes

Y = µ+ αi + e (2)
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Model linear is equivalent to this model (model nonlinear) for suitable choices of the αi
parameters. Model nonlinear is more flexible containing more parameters and will always fit
the data at least as well as model linear. Thus model linear is nested in nonlinear. From
the F -test we then conclude that we cannot reject the null hypothesis (model linear in favour
of nonlinear since the p-value= 0.499 exceeds 0.05. We thus prefer the simple linear model.
In precise terms, model nonlinear is equivalent to model linear in the special case of

α65 = 3
8α70. (3)

This can be seen algebraically as follows. The models are equivalent if we choose µ, α65 and
α70 such that

β0 + β162 = µ,

β0 + β165 = µ+ α65,

β0 + β170 = µ+ α70.

Subtracting the first equation from the second and third this yields

β13 = α65,

β18 = α70.

Eliminating β1 from these two equations, we obtain (3).

d) If we make observations at only two latitudes, the hypothesis that the slope in the linear
model β1 6= 0 is equivalent to the hypothesis µ1 6= µ2 in a two-sample t-test. We can thus
do power calculations based on theory for power of two-sample t-tests implemented in R as
the power.t.test function with the type="two.sample"-option. We want the sample size n
necessary to obtain a power γ = 0.9 when the true difference in the means, µ1 − µ2 = 3.1032
(from point 1a), given that the standard deviations of the observations σ = 2.032 (again from
the fitted model in point a), for a more conservative significance level α = 0.01. Leaving out
the n-argument, this is computed in R with the expression

power.t.test(delta=3.1032, sd=2.032, alpha=0.01, power=0.9,
type="two.sample")

Both one- or two-sided tests are correct here.

Problem 3

a) The spatial position of vehicle-moose collisions occur independently at a given rate λ (per unit
distance) along each road segment of length l, then this represents a Poisson-process along the
road segment and the total number of occurrences recorded will follow a Poisson distribution
with parameter µ = λl. The log link function of the model equation ensures that the constraint
µ > 0 is satisfied for all parameter values. By also including the log(l) as an offset variable we
have direct proportionality between the expected number of collisions µ and the length of the
segment l.
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b) According to the estimated model, changing the speed limit from 80 to 70 km/h leads to a
change by a factor of

eβ̂log(speedlimit)(log 70−log 80) = (70/80)β̂log(speedlimit) = (7/8)4.92 = 0.518,

that is, a 48.2% reduction. Since the estimated effects of the levels farmland (dyrketmark)
and alpine (fjell) relative to the reference level woodland (skog) are both negative (-0.49) and
-1.77), there is a higher expected number of collisions in woodland. Due to the multiplicative
effect of speedlimit changes implied by the log link-function, reducing the speedlimit for road
segments going through woodland would lead to the greatest overall reduction in collisions.

c) The observed deviance D = 161.71 is well below its expected value of 295 (residual degrees
of freedom) so there is no evidence for overdispersion in the data. A possible mechanisms
generating overdispersion might be missing covariates. This might include variation in local
moose density beyond what is explained by vegetation, variation in vehicle density, as well
as missing interaction terms (the effect the speedlimit may depend on vegetation type). An-
other mechanisms would be non-independence between encounters (individual moose may not
move around independently), wrong link function or wrong assumptions about the functional
relationship between numerical covariates and the response.

Problem 4

a) The likelihood function becomes

L(α, σ) = f(x1, x2, . . . , xn) (by definition)

=
n∏
i=1

f(xi) (by independence)

=
n∏
i=1

1
σαΓ(α)x

α−1
i e−xi/σ

= σ−nαΓ(α)−n(
∏

xi)α−1e− 1
σ

∑n

i=1
xi

and its log

lnL(α, σ) = −nα ln σ − n ln Γ(α) + (α− 1)
n∑
i=1

ln xi −
1
σ

n∑
i=1

xi.

A function computing this in R taking a vector par containing values of α and σ and a vector
x containing the observations can be written as

lnL <- function(par, x) {
alpha <- par[1]
sigma <- par[2]
n <- length(x)
-n*alpha*log(sigma) - n*lgamma(alpha) + (alpha+1)*sum(log(x)) - sum(x)/sigma

}

or, using R’s inbuilt dgamma function to compute the log densities,
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lnL <- function(par, x) {
sum(dgamma(x,par[1],par[2],log=TRUE))

}

For discrete observations, the likelihood function is defined as the (point) probability of the ob-
served data viewed as a function of the unknown parameters. For continuous observations, the
likelihood function is the joint probability density at x1, x2, . . . , xn, again viewed as a function
of the unknown parameters. The maximum likelihood estimators (MLEs) are the parameter
values that maximises this function. In many cases, for realistic models of biological interest,
the MLEs cannot be derived analytically and we therefore maximise the likelihood function
numerically using general purpose optimization algorithms available through the optim func-
tion in R. These optimization algorithms evaluates the likelihood (implemented by us as a
function in R as above) for a number of parameter values seeking out the optimum by looking
at the local gradient around its current position. This usually works well as long as we provide
reasonable initial values for the parameters.
As a technicality, we usually instead work with the log likelihood. This prevents numerical
underflow, and in practice usually improves convergence. As a second technicality, we usually
also instead minimise the negative of log because optim by default minimises the objective
function provided by the user.


