
Solution of assignment 10, ST2304
Problem 1
1.
Copying the code in Handout 2 gives us the two functions multinomprobs and lnL:

> multinomialprobs <- function(par) {
+ pA <- par[1]
+ pB <- par[2]
+ p0 <- 1-pA-pB
+ c(pA^2 + 2*pA*p0, pB^2 + 2*pB*p0, 2*pA*pB, p0^2)
+ }
> lnL <- function(par,x) {
+ n <- sum(x)
+ -dmultinom(x,prob=multinomialprobs(par),log=T)
+ }

Using this function to estimate the parameters of the blood type data gives:

> x <- c(44,27,4,88)
> fit <- optim(c(.25,.25),lnL,x=x)
> fit
$par
[1] 0.1604618 0.1003531

$value
[1] 6.917786

$counts
function gradient

65 NA

$convergence
[1] 0

$message
NULL

The estimated allele frequencies are given under $par, meaning that pA and pB are estimated
to ca. 0.16 and 0.10, respectively.
You can also see the estimated genotype frequencies through:

> Phat <- multinomialprobs(fit$par)
> Phat
[1] 0.26296987 0.15842973 0.03220566 0.54639474

Other information that may be of interest is the expected numbers and the fit of the model:

> n <- sum(x)
> n*Phat
[1] 42.864089 25.824047 5.249522 89.062342

1



> D <- sum((x-n*Phat)^2/(n*Phat))
> D
[1] 0.3937418
> pchisq(D,df=1,lower.tail=F)
[1] 0.5303391

This informs us that the model fits rather well with the data.

Ok, now to the standard errors of the estimates. Using the method in section 2.1 in Handout
5 we get:

> fit.hess <- optim(c(.25,.25),lnL,x=x, hessian=T)
> sqrt(diag(solve(fit.hess$hessian)))
[1] 0.02129385 0.01711418

Voila!

2.
Editing the commands to fit the probit link function yields the following two functions:

> multinomialprobs.H2 <- function(par) {
+ pa <- par[1]
+ pb <- par[2]
+ c((1-pa^2)*pb^2, (1-pb^2)*pa^2, (1-pa^2)*(1-pb^2), pa^2*pb^2)
+ }
> lnL.H2 <- function(par,x) {
+ n <- sum(x)
+ -dmultinom(x,prob=multinomialprobs.H2(par),log=T)
+ }

Note that this function will estimate pa and pb instead of pA and pB.
Using this function to evaluate the MLE of the gene frequencies gives us:

> x <- c(44,27,4,88)
> fit.H2 <- optim(c(.25,.25),lnL.H2,x=x, lower=c(.001,.001),upper=c(.999,.999))
Warning message:
In optim(c(0.25, 0.25), lnL.H2, x = x, lower = c(0.001, 0.001), :

bounds can only be used with method L-BFGS-B
> fit.H2
$par
[1] 0.8399537 0.8998954

$value
[1] 9.563715

$counts
function gradient

24 24

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
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The estimated allele frequencies of pa and pb are ca. 0.84 and 0.90, respectively. The warning
is nothing to worry about, it just informs us that optim will use the ”L-BFGS-B” optimisation
method (instead of the default ”Nelder-Mead” method).
Calculating the standard errors of the estimates result in:

> fit.hess.H2 <- optim(c(.75,.75),lnL.H2,x=x, hessian=T)
> sqrt(diag(solve(fit.hess.H2$hessian)))
[1] 0.02125107 0.01707864

3.
Expected number of observations can be estimated through:

> Phat.H2 <- multinomialprobs.H2(fit.H2$par)
> Phat.H2
[1] 0.23847153 0.13418201 0.05600618 0.57134027
> n <- sum(x)
> n*Phat.H2
[1] 38.870860 21.871667 9.129008 93.128465

4.
The χ2 statistic is calculated via:

> D.H2 <- sum((x-n*Phat.H2)^2/(n*Phat.H2))
> D.H2
[1] 5.043348
> pchisq(D.H2,df=1, lower.tail=F)
[1] 0.02472067

This is <0.025 which makes us reject H0. The model can be rejected.

5.
Goodness-of-fit can sometimes be estimated also for more parameters, although there might
appear ”ridges” in the likelihood surface, which results in the absence of a maxima (or an infinite
number of maxima).

Problem 2
Just to avoid spill-over gunk from problem 1

rm(list=ls(all=TRUE))

Now import the data:

> ovul <- read.table("http://www.math.ntnu.no/~jarlet/statmod/ovul2.dat")
> names(ovul)
[1] "time" "x" "n"
> attach(ovul)

1.
First we create a new function, using the probability function from the probit link function,
compare with the example in section 3 of Handout 5.

> lnLP <- function(par,x,n,time) {
+ beta0 <- par[1]
+ beta1 <- par[2]
+ p <- pnorm(beta0+beta1*time)
+ -sum(dbinom(x,size=n,prob=p,log=T))
+ }
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The model parameters can now be optimized, using relatively reasonable initial values

> fitP <- optim(c(-10,0),lnLP,x=x,n=n,time=time)
> fitP
$par
[1] -18.0510392 0.0651633

$value
[1] 92.6427

$counts
function gradient

101 NA

$convergence
[1] 0

$message
NULL

The values for β0 and β1 are -18.05 and 0.06516, which is almost exactly the same as we saw
in the glm model in exercise 7.

2.
The second part includes the additional parameter q, which will cap the function at a lower
level than 1, implying a model where not all females ovulate during the rut.

lnLP.q <- function(par,x,n,time) {
beta0 <- par[1]
beta1 <- par[2]
q <- par[3]
p <- q*pnorm(beta0+beta1*time)
-sum(dbinom(x,size=n,prob=p,log=T))

}

Fitting the parameters gives us

> fitP.q <- optim(c(-18,0.06,1),lnLP.q,x=x,n=n,time=time)
Warning messages:
1: In dbinom(x, size, prob, log) : NaNs produced
2: In dbinom(x, size, prob, log) : NaNs produced
3: In dbinom(x, size, prob, log) : NaNs produced
4: In dbinom(x, size, prob, log) : NaNs produced
5: In dbinom(x, size, prob, log) : NaNs produced
6: In dbinom(x, size, prob, log) : NaNs produced
7: In dbinom(x, size, prob, log) : NaNs produced
8: In dbinom(x, size, prob, log) : NaNs produced
9: In dbinom(x, size, prob, log) : NaNs produced
10: In dbinom(x, size, prob, log) : NaNs produced

You will also get a warning due to optim trying to evaluate outside accepted values (q>1
or q<0). This is however just a warning, not an error, and no downstream errors are caused
by this. The function will use use a non-default method to handle this.
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> fitP.q
$par
[1] -44.6367971 0.1626905 0.8482704

$value
[1] 68.208

$counts
function gradient

244 NA

$convergence
[1] 0

$message
NULL

The values for β0 and β1 are -44.64 and 0.1627, q is estimated as 0.8482.
Note that reasonable start values are necessary, otherwise the optimization may get stuck

in a local optimum. For example, if using starting values of β0 = β1 = 0 and q = 0.5, the
following happens

> optim(c(0,0,.5),lnLP.q,x=x,n=n,time=time,hessian=T)
$par
[1] -0.05664576 0.15075301 0.61914734

$value
[1] 174.8636

$counts
function gradient

62 NA

$convergence
[1] 0

$message
NULL

$hessian
[,1] [,2] [,3]

[1,] 0 0 0.000
[2,] 0 0 0.000
[3,] 0 0 2917.595

The hessian contains the second partial derivates at the likelihood with respect to β0, β1 and q.
In this case, all the derivates with respect parameters other than q are numerically equal zero
which indicates that the likelihood is almost completely flat in the β0 and β1 directions. The
likelihood thus has a local maximum in a plane orthogonal to the q-axis.

3.
In order to find the standard errors we use the same method as in Problem 1
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> fitP.q.hess <- optim(c(-18,0.06,1),lnLP.q,x=x,n=n,time=time, hessian=TRUE)
Warning messages:
1: In dbinom(x, size, prob, log) : NaNs produced
2: In dbinom(x, size, prob, log) : NaNs produced
3: In dbinom(x, size, prob, log) : NaNs produced
4: In dbinom(x, size, prob, log) : NaNs produced
5: In dbinom(x, size, prob, log) : NaNs produced
6: In dbinom(x, size, prob, log) : NaNs produced
7: In dbinom(x, size, prob, log) : NaNs produced
8: In dbinom(x, size, prob, log) : NaNs produced
9: In dbinom(x, size, prob, log) : NaNs produced
10: In dbinom(x, size, prob, log) : NaNs produced
> sqrt(diag(solve(fitP.q.hess$hessian)))
[1] 3.31537822 0.01216053 0.02221172

The standard errors for β0, β1 and q are 3.315, 0.01216 and 0.02221, respectively.

4.
Let us plot the data and our two models, plotting the data is rather straightforward.

> plot(time,ovul$x/ovul$n,cex=sqrt(ovul$n)*0.8, xlab="Time of year", ylab="x/n")

The curves for the models may look weird if we have residual values for x or n from Problem 1.

> curve(pnorm(fitP$par[1]+fitP$par[2]*x),col="orange",add=T)
> curve(fitP.q$par[3]*pnorm((fitP.q$par[1]+fitP.q$par[2]*x)),col="brown",add=T,lty="dotted")

5.
The models are nested, if the additional parameter q is set to 1, the models would be fitted to
identical values of the parameters β0 and β1. Thus the change in two times the log likelihood is
approximately chi-square distributed with p1−p0 = 3−2 = 1 degree of freedom. The observed
value of this test statistic becomes 2((−68.208) − (−92.6427)) = 48.88 which is much greater
than the critical value of χ2

0.05,1 = 3.84. We can thus reject the model from assignment 7 in
favour of the model including the additional threshold parameter q.
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Figure 1: Proportion of x/n individuals having ovulated at different days against number of
days since January 1. The probit function is solid orange and the probit function with the q
parameter is dotted brown.
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