
Solution of assignment 11, ST2304

Problem 1

1. Simulating 1000 realisations of Poisson distributed variables with d equal to 0.1, 0.5 and
5 we �nd that this gives recombination probabilities of 0.093, 0.331 and 0.5, respectively.

recombprob <- function(d,n=1000) {

n.odd <- 0

for(i in 1:n) {

X<-rpois(1,r)

if (X%%2==1) { # if the

n.odd <- n.odd + 1

}

}

n.odd/n

}

> recombprob(0.1)

[1] 0.093

> recombprob(0.5)

[1] 0.331

> recombprob(5)

[1] 0.495

2. Computing the recombination probability for a very large value of d (the expected number
of crossing over events) suggest that the recombination probability goes towards 0.5.

> recombprob(50,n=100000)

[1] 0.49909

A graph showing the relationship can be made as follows:

dd <- seq(0,5,len=100)

rr <- NULL

for (i in 1:length(dd))

rr[i] <- recombprob(dd[i])

plot(dd,rr,type="l",xlab="Distance between loci (in Morgans)",ylab="Recombination prob r")
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This is know as Haldane's mapping function r = 1
2
(1− e−2d).

Problem 2

1. This mean that the upper and lower boundary A and B of the interval are stochastic
variables which includes the unknown parameter with probability P (A < σ2 < B) = 0.95.

2. We can verify this for di�erent values of σ2, µ and n as follows.

coverage <- function(mu,sigma2,n,alpha=.05,m=1000) {

n.hits <- 0

q.upper <- qchisq(1-alpha/2,df=n-1)

q.lower <- qchisq(alpha/2,df=n-1)

for (i in 1:m) {

x <- rnorm(n,mean=mu,sd=sqrt(sigma2))

s <- var(x)

ci <- c(s*(n-1)/q.upper, s*(n-1)/q.lower)

if (ci[1]<sigma2 & ci[2]>sigma2)

n.hits <- n.hits + 1

}

n.hits/m

}

> coverage(0,1,10)

[1] 0.953

> coverage(0,1,10)

[1] 0.956

> coverage(10,100,10)

[1] 0.962

> coverage(-10,2,10)

[1] 0.957

> coverage(-10,2,1000)

[1] 0.952

Problem 3

1. Under the full model, all n pi's are free parameters (no relationship pi = qφ(β0+β1timei)
is imposed) and the MLEs are p̂i = xi/n which can be computed as follows in R.

> phat <- x/n

> phat

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.1875000 0.1190476 0.2000000

[8] 0.1851852 0.4000000 0.3181818 0.2857143 0.4615385 0.0000000 0.5000000

[15] 0.6250000 0.8055556 0.7272727 0.6666667 0.6551724 0.6969697 0.8214286

[22] 0.8571429 0.9333333 0.8000000 0.9166667 0.7826087 0.7857143 0.7826087

[29] 0.8461538 1.0000000 0.8000000 0.9285714 0.6666667 1.0000000 0.7500000

[36] 0.9000000 0.9000000 0.7777778 0.7500000 1.0000000 0.8571429 1.0000000

[43] 1.0000000 1.0000000 0.5000000 1.0000000 0.0000000 1.0000000 1.0000000

2. The maximum log likelihood under the full model is the log likelihood at the point
(p̂1, p̂2, . . . , p̂n) in the parameter space. At this point the log likelihood lnL(p1, p2, . . . , pn) =∑

ln f(xi) is
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> sum(dbinom(x,size=n,prob=phat,log=T))

[1] -47.56002

3. From the solution to assignment 10, the maximum log likelihood of the model pi = qφ(β0+
β1timei) is −68.21 (the maximum negative log likelihood is in the $value component of
the list returned by optim).

4. The observed deviance is two times the di�erence between the maximum log likelihoods,
that is,

> 2*((-47.56)-(-68.21))

[1] 41.3

5. Under the null hypothesis that the �tted model is correct the deviance D is chi-square
distributed with n− p = 49− 3 = 46 degrees of freedom. We reject this null hypothesis
if D is larger than the upper 0.05-quantile of the chi-square distribution,

> qchisq(.05,df=46,lower=F)

[1] 62.82962

that is, χ2
46 = 62.83 so we can not reject the hypothesis that the model is correct. The

P -value becomes

> pchisq(41.3,df=46,lower=F)

[1] 0.6691562

6. The expected value of a chi-square distributed variable is equal to it's degrees of freedom,
that is, in our case 46. The fact that the observed value of D is slightly smaller than this
indicates that the is some (statistically non-signi�cant) under-dispersion in the data.
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