
Solution of assignment 7, ST2304

Problem 1 1. Keeping only signi�cant terms in the model using drop1() and add1() we
end up with the following models using all 39 observations.

> summary(mod1)

Call:

glm(formula = moose ~ 1, family = binomial(link = "cloglog"),

offset = log(t))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8617 0.2674 -6.962 3.36e-12 ***

---

> summary(mod2)

Call:

glm(formula = fox ~ area + hours, family = binomial(link = "cloglog"),

offset = log(t))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9378 1.2728 -3.879 0.000105 ***

areaeast 2.3813 1.2440 1.914 0.055584 .

areasouth 2.6166 1.3174 1.986 0.047013 *

areawest 2.5189 1.3417 1.877 0.060463 .

hours 0.2760 0.1225 2.254 0.024221 *

Null deviance: 31.924 on 38 degrees of freedom

Residual deviance: 22.124 on 34 degrees of freedom

AIC: 32.124

> summary(mod4)

Call:

glm(formula = chanterelle ~ hours, family = binomial(link = "cloglog"),

offset = log(t))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0757 0.4213 -7.300 2.87e-13 ***

hours 0.2509 0.1051 2.386 0.0170 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 37.343 on 38 degrees of freedom

Residual deviance: 33.171 on 37 degrees of freedom

AIC: 37.171
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> summary(mod4)

Call:

glm(formula = chanterelle ~ hours, family = binomial(link = "cloglog"),

offset = log(t))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0757 0.4213 -7.300 2.87e-13 ***

hours 0.2509 0.1051 2.386 0.0170 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 37.343 on 38 degrees of freedom

Residual deviance: 33.171 on 37 degrees of freedom

AIC: 37.171

2. Since we here have a Poisson process with parameter λ the expected waiting time T until
the next encounter is exponential distributed with expectation

E(T ) =
1

λ
. (1)

According to the model
λ = eη (2)

where η is the linear predictor (not including the o�set log t).

The model for moose encounters only includes an intercept, hence λ̂ = 1−1.86 = 0.156 per
year and ÊT = 1/λ̂ = 6.42 years.

For fox encounters, the estimated value of the linear predictor η becomes

− 4.93 + 2.38 + 0.27 · 4 = −1.47 (3)

for a person living in the Trondheim east, spending four hours in the wild each weak
(Jarle). The corresponding value of λ and ET for such a person (Jarle) becomes λ̂ =
1−1.47 = 0.230 per year and ÊT = 1/λ̂ = 4.34 years.

Similarly, the expected time ET until the next badger and chantarelle encounter becomes
1.97 and 7.92 years, respectively.

Problem 2 1. According to the model, the relationship betwen probability p of menarche
having occured and age x is

probit p = β0 + β1x. (4)

From the model summary

> juul.girl <- read.table("http://www.math.ntnu.no/~jarlet/statmod/menarche.dat")

> summary(glm(menarche~age,fam=binomial("probit"),data=juul.girl))

Call:

glm(formula = menarche ~ age, family = binomial("probit"), data = juul.girl)
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.37033 1.06346 -10.69 <2e-16 ***

age 0.86233 0.08106 10.64 <2e-16 ***

we have β̂0 = −11.37 and β̂1 = 0.8623. The mean and standard deviation of the under-
lying normal distribution latent age (see handout 4) of menarche are

µ = −β0/β1, σ = 1/β1 (5)

so µ̂ = −13.19 and σ̂ = 1/.86 = 1.1596 years.

2. To compute variance and standard error of σ̂ we use the delta method. Here, the estimator
σ̂ is a function of β̂1 only,

σ̂ = f(β̂1) =
1

β̂1
(6)

Thus,

Var(σ̂) ≈ (
∂f

∂β1
)2Var(β̂1). (7)

The partial derivate of f with resepect to β1 is

∂f

∂β1
= − 1

β1

2

= − 1

0.862
= −1.35 (8)

Substituting this and the square of the standard error of β̂1 from the summary into into
(7) we �nd that Var σ̂ = 0.012 and SE(σ̂) = 0.11.

3. Since T is normally distributed, the upper and lower 0.025-quantile of the distribution
can be found as follows

qnorm(c(0.025,0.975),13.19,1.16)

which gives the interval (10.91, 15.46).

Problem 3 1. See Fig. 1.

2. The probit choice of link function corresponds to the assumption that time of ovulation
of di�erent female moose are normally distributed. Given that many di�erent factors
may a�ect the time of ovulation of each individuals (e.g. genetic factors, body condition,
climatic condition etc.) we would expect the distribution to be approximately normal
according to the central limit theorem. An alternative model based on the logit link
function would imply a heavier tailed logistic distribution for the underlying time of
ovulation which seems less realistic.

The model summary for the model becomes

Call:

glm(formula = prop ~ time, family = binomial(link = "probit"),

weights = n)
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Figure 1: Proportion of x/n individuals having ovulated at di�erent days against number of
days since January 1, and the probability p

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.057365 1.642587 -10.99 <2e-16 ***

time 0.065188 0.005852 11.14 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.607 on 48 degrees of freedom

Residual deviance: 90.165 on 47 degrees of freedom

AIC: 189.29

Number of Fisher Scoring iterations: 6

3. Based on the model
probit p = β0 + β1time (9)

the p expressed as a function of time becomes

p = φ(β0 + beta1time) (10)

where φ is the cumulative standard normal density function (denoted G in Løvås and
pnorm in R).

The �tted model is shown in Fig. 1 and the residuals in Fig. 3. For certain time intervals
the residuals are either almost always negative and positive indicating that the function
relationship between p and time is wrong.

4. Given that the model is correct (H0), the deviance of the model is chi-square with degrees
of freedom equal to the residual degrees of freedom. Based on the large observed residual
deviance of 90.16 we can reject this null hypothesis. The P value for the goodness-of-�t
test becomes
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Figure 2: Residuals of model against time

> pchisq(90.165,47,lower=F)

[1] 0.0001551624

5. Using (10) we �nd that an estimate of p at the end of the year (time= 365) is

> pnorm(-18.05+0.065188*365)

[1] 1

> print(pnorm(-18.05+0.065188*365),digit=16)

[1] 0.9999999953663183

that is, very close to 1. This seems unrealistic based on the observed data (one individual
had not ovulated on day 330).

6. The reason that the probit regression do not �t the data is that not all individuals ovulate
such that p as a function of time get a sigmoid curve that �ats out on a lower level then
p=1. clearly the model is not very good, and maybe a logit-link function god give a better
�t, assuming a logistic distribution with heavier tails than the normal distribution.

R code:

moose.ovulation <- read.table("http://www.math.ntnu.no/~jarlet/statmod/ovul2.dat")

attach(moose.ovulation)

prop=x/n

##make a plot

plot(time,prop,cex=sqrt(n)*0.8, xlab="Time of year", ylab="x/n")

##fit the model

mooselm=glm(prop~time, family=binomial(link="probit"), weight=n)

summary(mooselm)

##table of success and failures

mat<-cbind(x,n-x)

mooselm=glm(mat~time, family=binomial(link="probit"))

##add the curve of time and p
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curve(pnorm(-18.057365+ 0.065188 *x), to=max(time), from=min(time),add=T)

##plot the residuals

plot(time,resid(mooselm), ylab="Residuals", xlab="Time")

##p value for the goodness-of-fit test

pchisq(90.165,df=47,lower.tail=F)

##proportion ovualtion

pnorm(5.736255)
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