Solution of assignment 9, ST2304

Problem 1 The Ricker model

1. We see that when $N_t = K$, the expression $e^{r(1-N_t/K)}$ becomes 1 and N_{t+1} equals N_t . This indicates that the population size does not change from time t to t+1.

For N_t much smaller than K, the population size N_t changes with factor e^r each timestep $((1 - N_t/K))$ will approach 1). This will give an exponential growth of the populations size (no restriction of carrying capacity, K).

2. It follows that the change in population size

$$\Delta N_t = N_{t-1} - N_t = N_t (e^{r(1 - \frac{N_t}{K})} - 1) \tag{1}$$

If we choose r = 0.1 and K = 100, a graph of ΔN_t can be made using the curve function. Notice that ΔN_t has its largest value when $N_t = K/2$ and equals 0 when $N_t = K$.

```
r <- .1
K <- 100
curve(x*(exp(r*(1-x/K))-1),from=0,to=120,
     xlab=expression(N[t]),ylab=expression(N[t+1]-N[t]))</pre>
```

3. Writing a function which computes the population size from time t = 2 to tmax, given the start population size N_1 , the intrinsic growth rate r and the carrying capacity K.

```
Nfunc <- function(r,N1,K,tmax) {
    N=rep(NA,tmax)
    N[1]=N1
    for(i in 2:tmax) {
        N[i]= N[i-1]*exp(r*(1-(N[i-1]/K)))
    }
    plot(1:tmax,N, ylab="Population size", xlab="Time")
    return(N)
}
Nt <- Nfunc(r=0.5,N1=100,K=150,tmax=10)</pre>
```

Problem 2 The solution to the Euler Lotka equation is the root of the function

$$f(\lambda) = \sum \lambda^{-i} l_i m_i - 1$$

To use Newton's method we need derivate of $f(\lambda)$

$$f'(\lambda) = \sum -i\lambda^{(-i-1)}l_i m_i.$$

The iteration equation then becomes

$$\lambda_{t+1} = \lambda_t - f(\lambda_t)/f'(\lambda_t)$$

= $\lambda_t - (\sum_i \lambda_t^{-i} l_i m_i - 1)/(\sum_i -i \lambda_t^{(-i-1)} l_i m_i)$

which can be solved as follows in R.

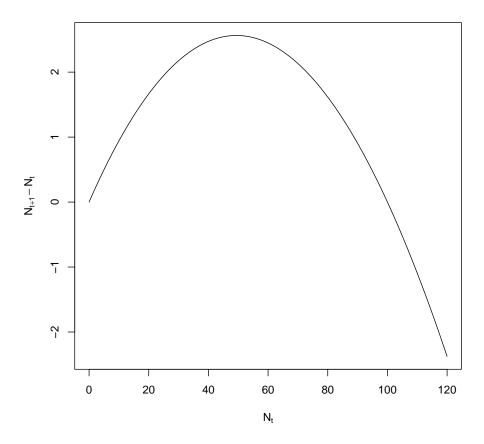


Figure 1: The chaquge in population size as a function of last years population size, with parameter values r=0.1 and K=100

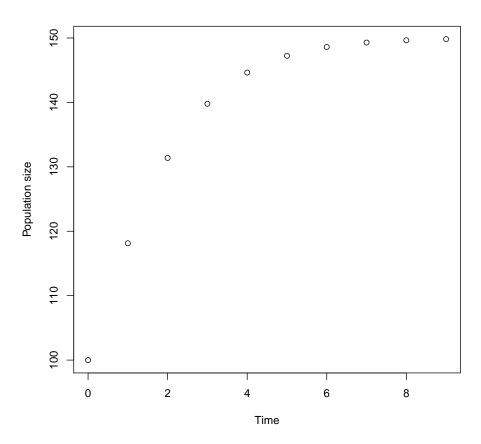


Figure 2: Population size against time, for parameter values $r=0.5, K=150, N_1=100, \ tmax=10$

```
eulerlotka <- function(m,1) {
    n <- length(m)
    i <- 1:n
    lambda <- 1
    while (abs(sum(lambda^(-i)*l*m)-1)>1e-8) {
        lambda <- lambda-(sum(lambda^(-i)*l*m)-1)/sum(-i*lambda^(-i-1)*l*m)
    }
    lambda
}
eulerlotka(c(.9,.8,.25),c(0,0,32))</pre>
```

Note how the iterations are repeated as long as $f(\lambda)$ in absolute value is larger than the desired accuracy of the solution.